

Konformationsanalysen von pyrolytisch erzeugten [2.2]Phanen des 4-Pyranons

Werner Massa, Michael Schween, Friedrich W. Steuber* und Sigrid Wocadlo

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg

Eingegangen am 2. November 1989

Key Words: Pyranophanes / Sulfone pyrolysis / Ring strain

Conformational Analyses of [2.2]Phanes of 4-Pyranone Generated by Pyrolysis

The synthesis of the first phanes of 4-pyranone is accomplished by pyrolysis of bis(sulfone) 4. Analogously, 9, 10, and 11 are synthesized. While 5 is conformationally mobile in solution, 9 and 10 are fixed (up to 100° C) and exhibit *anti* conformation as shown by X-ray structural analysis (9) and computer simulation of the ¹H-NMR spectra (11). Like 9 and 11, 5 exists in

[2.2]Cyclophane mit Heterocyclen als Untereinheiten werfen bereits für sich genommen interessante Fragen auf, z. B. zu ihrer Stereochemie und zur konformativen Beweglichkeit¹⁾. Sie sind aber gleichzeitig in präparativer Hinsicht überaus interessant, wenn, wie bei den Phanen des 4-Pyranons, die unseres Wissens bisher unbekannt sind, die vorhandenen "freien" oder "geschützten" Funktionalitäten vielfältige chemische Reaktionen erlauben²⁾ und damit zur

a staircase-like structure in the crystal. The ¹H-NMR spectra of the metaparacyclophane **10** shows coalescence of the signals of the methylene protons at room temperature. The flexibility of **10** at 60°C is interpreted as a swinging process. The crystal structure of bis(sulfone) **8a** shows that the two planar rings are tilted by 60° with respect to each other.

Synthese anderer, schwer zugänglicher Makrocyclen mit diversen funktionellen Gruppen geeignet erscheinen.

Synthesen

Die Darstellung von 5 folgt konventionellen Wegen der Phan-Chemie. 2,6-Bis(brommethyl)-3,5-diphenyl-4-pyranon (2) wird aus 2,6-Dimethyl-3,5-diphenyl-4-pyranon³⁾ (1) durch NBS-Bromierung in 57proz. Ausbeute erhalten.

Die Synthese von 3 gelingt mittels Na₂S in Inertgasatmosphäre unter Anwendung des Zwei-Komponenten-Verdünnungsprinzips $(2C-VP)^{4}$ in 42proz. Ausbeute. Oxidation von 3 mit 30proz. H₂O₂-Lösung in Eisessig bei 100°C führt mit einer Ausbeute von 81% zum Bis(sulfon) 4⁴, das zum Phan 5 des 4-Pyranons pyrolysiert wird⁵.

Die Dithiole 6a-c synthetisiert man aus den entsprechenden Bis(brommethyl)benzolen nach der Thioharnstoff-Methode⁶⁾ in Ausbeuten von 78, 91 und 69%. Wiederum unter Anwendung des Zwei-Komponenten-Verdünnungsprinzips cyclisiert man 6a-c jeweils mit 2 zu den cyclischen Bis(sulfiden) 7a-c, die in der oben beschriebenen Weise zu den entsprechenden Bis(sulfonen) 8a-c oxidiert werden. Die Gasphasen-Pyrolysen von 8a-c bei $5 \times 10^{-4}-5 \times 10^{-2}$ Torr und 585°C ergeben die Pyranophanone 9-11 in Ausbeuten von 45, 25 und 35%.

Konformationsanalysen in Lösung – Ergebnisse der NMR-Untersuchungen

Dithiapyranophandion 3 und Dithiapyranophanone 7a-c

Die Dithiaphane 3, 7a und 7b sind bei Raumtemperatur erwartungsgemäß konformativ beweglich, die Signale der Methylen-Protonen erscheinen in den ¹H-NMR-Spektren (CDCl₃, 300 MHz) jeweils als scharfe Singuletts. Bemerkenswert ist lediglich die Tieffeldverschiebung des intraanularen Protons H_i des Metacyclophans 7a von etwa 0.9 ppm gegenüber dem Edukt ($\delta = 8.21$; Edukt 6a: $\delta = 7.34$). Wir interpretieren diese durch eine H-Brücken-artige Wech-

selwirkung dieses Protons mit dem Ring-Sauerstoff-Atom des 4-Pyranon-Rings, die aus der, im Modell erkennbaren, in syn- wie in anti-Konformation bestehenden Nähe beider Atome zueinander resultiert.

Im Gegensatz zu 3, 7a und 7b ist 7c wegen seiner intraanularen Methoxy-Gruppe konformativ fixiert. Hier sind die Methylen-Protonen jeweils diastereotop und stellen zwei AB-Systeme dar, so daß insgesamt vier Dubletts erscheinen. Die Interpretation ist zwingend, daß nur eines der beiden möglichen Konformeren, syn oder anti, vorliegen kann, da bei gleichzeitiger Existenz beider Konformerer acht Dubletts erscheinen müßten. Diese Deutung wird dadurch gestützt, daß für die Protonen der intraanularen Methoxy-Gruppe auch nur ein einziges Singulett erscheint.

Abb. 1. H-Brücken-artige Wechselwirkung des intraanularen Protons in 7a mit dem Ring-Sauerstoff-Atom (δ -Werte in ppm)

Dithiaphan-S,S,S',S'-tetroxide 4 und 8a-c

Für die Interpretation der ¹H-NMR-Spektren der Bis-(sulfone) **4** und **8a** – **c** ($[D_6]$ DMSO, 300 MHz) gilt Analoges wie für ihre jeweiligen Edukte: Nur bei **8c** ist bei Raumtemperatur und auch bei 373 K keine Konformationsumkehr zu beobachten. Wie bei **7c** lassen auch die NMR-Daten von 8c keine Entscheidung für eine der beiden möglichen Konformationen zu.

Pyranophandion 5

Die Konformationsumkehr des Pyranophandions 5 ist bei Raumtemperatur ungehindert möglich [¹H-NMR (CDCl₃, 300 MHz): scharfes Singulett der Methylen-Protonen bei $\delta = 2.77$]. Dieses Ergebnis stimmt auch mit den Beobachtungen am [2.2](2,6)Pyridinophan, einer wegen des Fehlens intraanularer Substituenten vergleichbaren Verbindung, überein, bei dem die Konformationsumkehr gleichfalls ungehindert ist⁷). Interessanter noch als die Moleküldynamik von 5 in Lösung ist seine Kristallstruktur, die durch eine Röntgen-Strukturanalyse ermittelt wurde (s. u.).

Phanon 9

Das Phanon 9 ist, im Gegensatz zu seinem Edukt 8a und zum Pyranonophandion 5 bis +100 °C ([D₆]DMSO, 400 MHz) konformativ fixiert⁸⁾. Im ¹H-NMR-Spektrum (CDCl₃, 300 MHz, 25 °C) erscheinen für die Methylen-Protonen drei Gruppen scharfer Signale (komplexe Multipletts zweier ABCD-Systeme mit einem Intensitätsverhältnis von 2:4:2). Eine Gruppe von Methylen-Protonen am selben C-Atom (Intensität 4) muß chemisch annähernd äquivalent sein, da keine Frequenzverschiebung beobachtbar ist ($\delta =$ 2.82 - 2.87). Die am anderen Methylen-C-Atom gebundenen Protonen sind hingegen deutlich voneinander verschieden; bei diesen handelt es sich offenbar um die zum Heterocyclus α -ständigen. Die äquatorialen Protonen (H¹_e, vgl. Abb. 2) sind, wie man im Modell deutlich erkennt, durch die Phenyl-Substituenten in 3- und 5-Position stark abgeschirmt, und ihre Signale erscheinen als komplexes Multiplett bei $\delta =$ 1.84 – 1.92. Die axialen Protonen (H_a^1) sind dagegen als Folge des induktiven Effekts des Ring-Sauerstoff-Atoms leicht entschirmt, und ihre Signale erscheinen als komplexes Multiplett bei $\delta = 2.90 - 2.97$ (eine Spin-Simulation zur Ermittlung von Kopplungskonstanten wurde nicht durchgeführt).

Interessant ist die chemische Verschiebung des intraanularen Protons H_i von $\delta = 6.62$. Man beobachtet hier,

Abb. 2. ¹H-NMR-Spektrum von 9 (CDCl₃, 300 MHz, 25 C)

im Gegensatz zu den vergleichbaren Protonen der Vorstufen [Bis(sulfid) 7a: $\delta(H_i) = 8.21$, Bis(sulfon) 8a $\delta(H_i) = 7.97$], einen deutlichen abschirmenden Effekt, der nur durch die Wechselwirkung dieses Protons mit dem π -System des Heterocyclus in *anti*-Konformation erklärbar ist, wie man auch im Modell erkennt⁸). Die Tatsache, daß nur ein einziges Singulett erscheint und die Röntgen-Strukturanalyse (s. u.) beweisen die alleinige Existenz der *anti*-Konformation.

Phanon 10

Phanon 10 zeigt im ¹H-NMR-Spektrum (CDCl₃, 400 MHz) bei Raumtemperatur Koaleszenz für Methylen- und Phenylen-Protonen. Die Messungen bei 218 und 333 K ermöglichen jedoch eine schlüssige Interpretation der Dynamik von 10.

Abb. 3. ¹H-NMR-Spektren von 10 bei 218, 298 und 333 K (CDCl₃, 400 MHz)

Die Situation bei 218 K ähnelt der von 9 bei Raumtemperatur: Wiederum befindet sich offenbar eine Gruppe von Methylen-Protonen der "eingefrorenen" Konformation in chemisch ähnlicher Umgebung (komplexes Multiplett bei $\delta = 2.56-2.63$, Intensität 4). Die Protonen-Signale der anderen Methylen-Gruppen erscheinen hingegen deutlich verschieden (Multiplett bei $\delta = 3.07-3.12$, Intensität 2; Multiplett bei $\delta = 1.92-2.01$, Intensität 2), wobei die Zuord-

Abb. 4. Vergleich der ¹H-NMR-Resonanzen der Phenylen-Protonen von 10 bei 218 K (CDCl₃, 400 MHz) und 12 bei 298 K (CDCl₃, 400 MHz) (δ-Werte in ppm)

nungen analog zu denen bei 9 zu treffen sind. Die Beobachtung zweier Singuletts für die Phenylen-Protonen ergibt sich (bei fixierter Konformation) aus der Unterscheidbarkeit von inneren, d. h. "unter" dem Heterocyclus liegenden (H_i in Abb. 4, $\delta = 6.94$) und äußeren Protonen (H_a, $\delta =$ 7.38); diese Beobachtungen stimmen tendenziell mit denen überein, die von Metaparacyclophan 12 bekannt sind, das bereits bei Raumtemperatur konformativ fixiert ist⁹.

Der deutlich geringere Abschirmungseffekt für H_i bei 10 im Vergleich zu dem bei 12 ergibt sich aus der Nicht-Aromatizität des Heterocyclus. Berücksichtigt man jedoch die Möglichkeit der Pyrylium-Enolat-Grenzstruktur von 10, so könnte man die zwar kleinere, aber dennoch beobachtbare Abschirmung auch als Ergebnis aus abschirmendem Ringstromeffekt des Pyrylium-Ringes einerseits und dem aus der positiven Ladung resultierenden entschirmenden Effekt andererseits erklären. Die Frage, welcher Art der dynamische Prozeß ist, den Phanon 10 bei höheren Temperaturen vollzieht, kann nicht vollständig beantwortet werden. Formal muß nämlich zunächst zwischen einem "Schaukel- oder Umklappvorgang" und einer Rotation des Phenylen-Rings um die durch die Brückenkopfatome C-3 und C-8 verlaufende Achse unterschieden werden¹⁰, wie sie in Abb. 5 und 6 schematisch dargestellt sind.

Abb. 5. Schaukelprozeß von 10 bei $+60^{\circ}$ C (Vorgang S)

Abb. 6. Theoretisch denkbare Rotation des Phenylen-Rings in 10 um seine Brückenkopfatome (Vorgang R)

Das ¹H-NMR-Spektrum bei 333 K beweist lediglich, daß der Schaukelprozeß (S), der auch im Modell realisierbar ist, stattfindet: die "breiten Berge" der Methylen- und Phenylen-Protonen-Signale (bei 298 K) sind zugunsten verbreiterter Singuletts bei $\delta = 2.26$ und 2.80 bzw. 7.17 verschwunden. Äquatoriale und axiale Protonen jeder Methylen-Gruppe sind nun voneinander ebenso wenig zu unterscheiden wie die Phenylen-Protonen H_i und H_a . Um zu prüfen, ob auch Rotation des Phenylen-Ringes stattfinden kann, müßte eine Modellsubstanz mit größeren Substituenten am Phenylen-Ring (etwa CH₃ oder Cl) untersucht werden. Wäre deren Koaleszenztemperatur für die Phenylen-Protonen deutlich höher als die von 10, so wäre dies ein Indiz dafür, daß auch die ermittelte Koaleszenztemperatur von 10 diejenige des Rotationsprozesses ist und daß bei höherer Temperatur neben "Schaukeln" (S) auch Rotation (R) stattfindet. Wäre die Koaleszenztemperatur der Modellsubstanz jedoch nicht oder nur unwesentlich verschieden von der von 10, was wir vermuten, so bezieht sich die Koaleszenztemperatur von 10 lediglich auf den Schaukelprozeß.

Phanon 11

Das ¹H-NMR-Spektrum von 11 (Abb. 7) zeigt für die Methylen-Protonen vier Gruppen scharfer Signale (zweier ABCD-Systeme), die eine eindeutige Konformationsanalyse der fixierten Konformation mittels Spinsimulation ermöglichen.

Abb. 7. ¹H-NMR-Spektrum der Methylen-Protonen von 11 (CDCl₃, 400 MHz)

Abb. 8. Diederwinkel der Substituenten R einer Ethylen-Brücke in syn- und anti-Konformation

Hauptunterscheidungskriterium zwischen syn- und anti-Konformation ist der unterschiedliche Diederwinkel der Substituenten an den Ethylen-Brücken, in syn-Konformation beträgt er idealerweise 0°C, in anti-Konformation 60° (Abb. 8).

Mit der Karplus-Beziehung¹¹ ist eine eindeutige Entscheidung für die *anti*- und gegen die *syn*-Konformation möglich: Alle vicinalen *trans*-Kopplungen ($\phi = 180^{\circ}$) liegen erfahrungsgemäß im Frequenzbereich von 10–16 Hz¹². Bei [2.2]Metacyclophan z. B., dessen *anti*-Konformation durch eine Röntgen-Strukturanalyse¹³ belegt ist, beträgt sie z. B. 12.3 Hz¹⁴. Dieselbe ${}^{3}J_{t}$ -(${}^{3}J_{H^{1}H^{4-}}$)Kopplung liegt in unserem Fall vor. Auch die *gauche*-Kopplungen ${}^{3}J_{g}$) der anti-Konformation liegen mit 3.6 Hz ${}^{3}J_{\mathrm{H^{2}H^{3}}}$ 3.7 Hz ${}^{3}J_{\mathrm{H^{2}H^{3}}}$ und 3.4 Hz ${}^{3}J_{\mathrm{H^{2}H^{4}}}$ ebenso in dem Erwartungsberich (3-5Hz)¹²⁾ wie die geminalen ${}^{2}J_{\mathrm{H^{1}H^{2}}}$ und ${}^{2}J_{\mathrm{H^{3}H^{4}}}$ (-12.6 bzw. -12.8 Hz)¹⁵⁾. Die Richtigkeit der Zuordnungen beweist die Identität des nach experimentellen Daten simulierten Spektrums¹⁶⁾ mit dem tatsächlich erhaltenen.

Aus allen Phanen des 4-Pyranons sind inzwischen Pyranophanium-Salze synthetisiert worden. Die Diskussion dieser neuartigen Verbindungen erfolgt an anderer Stelle.

Kristallstrukturen von 5, 8a und 9

Von [2.2](2,6)Pyranophan-7,15-dion 5, dem "gemischten" [2.2]Phanon 9 mit 4-Pyranon- und Phenylen-Ring und der "gemischten" Bis(sulfon)-Zwischenstufe 8a, die zu den [3.3]-Phanen zu rechnen ist, wurde die Kristallstruktur durch Röntgen-Beugung an Einkristallen bestimmt.

Pyranophandion 5 · Aceton

5 kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit einem Äquivalent Aceton. Dieses liegt dicht neben einem Symmetriezentrum und ist einer Lagefehlordnung unterworfen, so daß die Methyl-Gruppen bei beiden alternativen Orientierungen etwa zur Deckung kommen. Die Pyranophandion-Einheit selbst besitzt die Punktsymmetrie $\overline{1}$ (C_i), folglich liegen die beiden 4-Pyranon-Ringe parallel zueinander (Abb. 9). Es liegt die treppenartige *anti*-Konformation vor, der Torsionswinkel C2-C1-C7'-C6' zeigt mit -73.2(4)° *gauche*-Konformation in der Brücke an (Tab. 1).

Abb. 9. SCHAKAL-Zeichnung¹⁷⁾ eines Moleküls von 5 im Kristall (willkürliche Radien)

Die 4-Pyranon-Ringe weisen, wie in [2.2]Cyclophanen allgemein beobachtet wird, Wannenkonformation mit Winkelung "nach außen" auf: die Diederwinkel zwischen der zentralen Ebene C2,C3,C5,C6 und den Ebenen C2,O6,C6 bzw. C3,C4,O4,C5 betragen 13.1(3) bzw. 6.0(2)°. Sie liegen damit etwas höher als in [2.2]Metacyclophan^{13b)} (9.5 bzw. 4.1°) oder in [2.2]Pyridinophan¹⁸⁾ mit 9.1 bzw. 4.1° (Werte abgeschätzt nach Angaben in Lit.¹, S. 167), wo dieselbe *anti*-Konformation gefunden wurde. Die Abwinkelung der Bin-

Tab. 1. Ausgewählte Bindungslängen [pm] und Winkel [°] in 5 · Aceton

C1		- c	2		151.0(5)	C1		- C	71		154.6(5)
C2		- c	3		132.4(5)	06		- c	2		137.5(4)
C3	,	- C	4		149.0(5)	C3		- c	8		148.7(4)
04		- c	4		121.6(4)	C4		- c	5		146.5(4)
C5		- c	6		133.9(5)	06		- c	6		138.6(4)
C5		- 0	14		149.6(5)	C6		- c	7		149.2(5)
C2	_	C1	-	C7 '	112.7(3)	C3	_	C2	_	06	122.7(3)
C3	-	C2	-	Ċ1	127.5(3)	06	-	C2	-	C1	109.8(3)
C4	-	C3	-	C2	120.0(3)	C4	-	Ċ3	-	C8	118.0(3)
C2	-	C3	-	C8	122.0(3)	04	-	C4	-	C3	122.0(3)
04	-	C4	-	C5	123.7(3)	C3	-	C4		C5	114.2(3)
C4	~	C5	-	C6	120.6(3)	C4	-	C5	-	C14	117.9(3)
C6	-	C5	-	C14	121.5(3)	06	-	C6	-	C5	121.5(3)
06	-	C6	-	C7	108.7(3)	C5	-	C6	-	C7	129.6(3)
C6	-	06	-	C2	118.6(2)	C1'	-	C7	-	C6	113.2(3)
-									_		

dungen zu den Brücken bezüglich der zentralen Ringebene, die z. T. auf der wannenartigen Deformation des Rings beruhen, sind mit 6.9(2) an C1 bzw. $12.1(2)^{\circ}$ an C7 – wohl packungsbedingt – unterschiedlich und eher schwächer als in den beiden erwähnten Vergleichsverbindungen (15.8 und 13.0°).

Phanon 9

Der (formale) Ersatz einer der beiden 4-Pyranon-Einheiten in 5 durch einen Phenylen-Ring führt zur selben anti-Konformation des Phan-Gerüsts (Abb. 10) und hat nur geringen Einfluß auf die Geometrie der "4-Pyranon-Hälfte" der Struktur (Tab. 2).

Abb. 10. SCHAKAL-Zeichnung¹⁷⁾ eines Moleküls von 9 im Kristall (willkürliche Radien)

Tab. 2. Ausgewählte Bindungslängen [pm] und Winkel [°] in 9

C1	-	C2			155.2(5)	Cl	-	C15		151.5(4)
C2	-	C3			150.5(5)	C3	-	C4		139.2(5)
C3	-	C8			140.5(4)	C4	-	C5		137.0(5)
C5	-	C6			139.7(5)	C6	-	C7		136.9(4)
C7	-	C9			152.2(4)	C7	-	C8		138.8(4)
C9	~	C1	D		155.4(5)	C10	-	C11		150.0(4)
01		C1:	1		138.8(3)	01	-	C15		137.2(3)
C11	-	C1	2		133.3(4)	C12	-	C13		145.7(4)
C12	-	C2	2		151.0(3)	02	-	C13		122.3(3)
C13	-	C1-	4		147.9(3)	C14	-	C15		133.7(4)
C14	-	C1	6		148.0(4)					
C2	-	C1	-	C15	114.1(3)	C3	-	C2 -	· C1	111.5(2)
C4	-	C3	-	C8	117.2(3)	C4	-	C3 -	• C2	124.5(3)
C8	-	C3	-	C2	117.5(3)	C5	-	C4 -	• C3	121.3(3)
C6	-	C5	-	C4	119.8(3)	C7	-	C6 -	· C5	120.1(3)
C9	-	C7	-	C6	122.3(3)	C9	-	C7 -	- C8	117.3(3)
C6	-	C7	-	C8	119.2(3)	C3	-	C8 -	• C7	120.7(3)
C10	-	C9	-	C7	109.2(3)	C11		C10 -	· C9	112.6(2)
01	-	C11	-	C10	111.3(2)	01	-	C11 -	- C12	120.2(2)
C10	-	C11	-	C12	128.4(2)	C11	-	01 -	- C15	119.8(2)
C11	-	C12	-	C13	120.5(2)	C11	-	C12 -	- C22	122.4(2)
C13	-	C12	-	C22	117.1(2)	C12	-	C13 -	· 02	122.6(2)
C12	-	C13	-	C14	115.5(2)	02	-	C13 -	C14	121.8(2)
C13	-	C14	-	C15	118.8(2)	C13	-	C14 -	- C16	117.4(2)
C15	-	C14	-	C16	123.7(2)	01	-	C15 -	- C1	110.0(2)
01	-	C15		C14	121.8(2)	C1	-	C15 -	- C14	128.1(2)
-						-		-		• •
			_							

Die Diederwinkel des wannenförmigen 4-Pyranon-Rings betragen an der C11-C15-Verbindungslinie 14.9(2), an der C12-C14-Achse 7.3(2)°. Die Abwinkelung der Bindungen vom Ring an C1 und C10 sind mit 4.8(2) und 12.6(2)° ebenfalls unterschiedlich und ähnlich groß. Beim Phenylen-Ring ist die Abwinkelung an der C3-C7-Achse sehr ausgeprägt [12.4(3)°], der intramolekulare Abstand zwischen O1 und C8 bzw. H8 beträgt 260.8(3) bzw. 238(2) pm, die Faltung an der äußeren C4-C6-Verbindungslinie ist mit 3.9(4)° jedoch nur noch gering (Tab. 2).

Die beiden verbrückten Ringe des – kristallographisch symmetrielosen – Moleküls sind leicht, um $7.5(2)^{\circ}$, gegeneinander gekippt, die Phenyl-Substituenten am 4-Pyranon-Ring gleichsinnig um 68.0(2) (an C12) bzw. 65.3(2)° (an C14) gegen dessen Zentralebene geneigt.

Dithiaphan-S,S,S',S'-tetroxid 8a · Aceton

Das Bis(sulfon) **8a** kristallisiert wie **5** ebenfalls mit einem Äquivalent Aceton aus. Beide Moleküle besitzen die Punktsymmetrie $m(C_s)$. Als [3.3]Phan nimmt **8a** eine der beiden möglichen "anti"-Konformationen ein (Abb. 11).

Abb. 11. SCHAKAL-Zeichnung¹⁷⁾ eines Moleküls von **8a** im Kristall; Blick auf die Spiegelebene (willkürliche Radien)

Die Torsionswinkel der Brücken sind an C1-S2 -113.8(3), an S2-C3 41.4(3)° (und entsprechend mit vertauschtem Vorzeichen am Spiegelbild). Die zweite "anti"-Form würde durch Umklappen von der gauche- in die anti-Konformation an den S2-C3-Bindungen erzeugt, die hypothetische "syn"-Form durch Einführung der völlig ekliptischen Konformation an der C1-S2-Achse bezüglich C9-C1 und S2-C3. Natürlich sind bei Variation der Torsionswinkel noch weitere Konformationsvarianten denkbar. Daß zumindest im Kristall die vorliegende Geometrie ausschließlich auftritt, liegt mit Sicherheit an der in dieser Form minimalen sterischen Hinderung: In der zweiten "anti"-Form wäre erhebliche sterische Wechselwirkung der Sulfon-Gruppen mit dem Phenylen-Ring C3-C7 zu erwarten, in der "syn"-Form Hinderung dieses Restes durch die C=O-Funktion des 4-Pyranons und den Phenyl-Ringen an C10 bzw. C10'. Der vorliegende Verbrückungstyp bewirkt eine starke Winkelung der verknüpften Ringsysteme von 60.6(2)° zueinander. Die Verbrückung läßt sich durch die Faltungswinkel an den Verbindungslinien C1…C1' (Winkel zwischen Ebene des Pyranonrings und Ebene C1,C1',S2,S2') von 68.1(1), S2 ··· S2' (Winkel zwischen Ebene C1,C1',S2,S2' und Ebene S2,S2',C3,C3') von 68.5(2)° und an der Achse C3…C3' (Winkel zwischen Ebene S2,S2',C3,C3' und Phe-

Tab. 3. Ausgewählte Bindungslängen [pm] und Winkel [°] in $8a \cdot Aceton$

S 2	-	021			144.6(3)	S2	-	022			143.9(3)
S2	-	C1			180.9(4)	S2	-	C3			178.1(4)
C1	-	C9			149.7(5)	C3	-	C4			150.4(5)
C4	-	C7			138.5(5)	C4	-	C5			137.9(5)
C5	-	C6			136.6(5)	08	-	C9			136.3(4)
C9	-	C10			133.9(5)	C10	-	C11			147.2(5)
011	-	C11			123.4(7)	C10	-	C12			149.5(5)
021	-	S2	-	022	117.8(2)	021	-	S2	-	C1	107.7(2)
021	-	S2	-	C3	107.3(2)	022	-	S2	-	C1	107.4(2)
022	-	S2	-	C3	109.3(2)	C1	-	S 2	-	C3	106.8(2)
S2	-	C1	-	C9	114.2(3)	S2	-	C3	-	C4	114.6(3)
C3	-	C4	-	C7	120.6(4)	C3	-	C4	-	C5	119.6(4)
C7	-	C4	-	C5	119.9(4)	C4	-	C5	-	C6	120.2(4)
C5	-	C6	-	C5 '	120.4(5)	C4	-	C7	-	C4 '	119.4(5)
C9	-	08	-	C9 '	119,5(3)	C1	-	C9	-	08	110.5(3)
C1	-	C9	-	C10	126.1(4)	08	-	C9	-	C10	123.3(4)
C9	-	C10	-	C11	118.7(4)	C9	-	C10	-	C12	123.1(3)
C11	-	C10	-	C12	118.1(3)	C10	-	C11	-	011	121.9(2)
C10	-	C11	-	C10'	116.3(3)						

Im Gegensatz zu den [2.2]Metacyclophanen sind die verbrückten Ringsysteme praktisch ungestört: der Phenylen-Ring weicht innerhalb der Fehlergrenze nicht von der Planarität ab [max. Abweichung von der "besten" Ebene 1(3) pm], der 4-Pyranon-Ring zeigt geringe sesselförmige Deformation, wobei an der C10-C10'-Verbindungslinie eine Faltung nach "unten" um 3.9(2), an der Achse C9-C9′ nach "oben" um 1.2(4)° beobachtet wird (Abb. 11). Die fehlende gegenseitige Beeinflussung wird auch am intramolekularen Abstand O8...C7 von 307 pm deutlich. Auch die Neigung der Bindungen zu den Brücken C9-C1 bzw. C4-C3 gegen die Ringebenen sind mit 2.5(3) bzw. $0.1(3)^{\circ}$ hier praktisch verschwunden. Die Phenyl-Substituenten am 4-Pyranon-Ring sind gegen dessen Ebene um $55.2(2)^{\circ}$ geneigt, im Gegensatz zu 5 und 9 ist die resultierende Verdrillung um die C10-C11- bzw. C10'-C11'-Bindung jedoch, bedingt durch die Spiegelebene, gegensinnig.

Wir danken dem Fonds der Chemischen Industrie für die großzügige Unterstützung dieser Arbeit.

Experimenteller Teil

NMR (TMS als interner Standard bei Verwendung von CDCl₃ als Solvens): Bruker AM-400, Bruker AC-300. – MS: Varian MAT CH 7A, Varian MAT 711. – IR (KBr-Preßlinge): Bruker IFS 88. – Schmelzpunkte: Kofler-Heiztischmikroskop.

2,6-Bis(brommethyl)-3,5-diphenyl-4-pyranon (2): 22.08 g (80 mmol) gründlich getrocknetes 2,6-Dimethyl-3,5-diphenyl-4-pyranon³⁾ (1), 29.05 g (163 mmol) über P_2O_5 getrocknetes *N*-Bromsuccinimid und 200 mg Dibenzoylperoxid (mit einem Wassergehalt von 20%) werden in 125 ml absolutem CCl₄ 48 h zum Rückfluß erhitzt. Nach Abkühlen saugt man den ausgefallenen Feststoff ab und verwirft das Filtrat. Der Feststoff wird 30 min in 1 l Wasser, das 5% Ethanol enthält, bei 50-60°C gerührt. Den verbliebenen Feststoff saugt man ab und wäscht ihn mehrmals mit kleinen Por-

tionen kalten Ethanols. Umkristallisation aus Ethanol liefert 19.80 g (57%) blaßgelbe Nadeln vom Schmelzpunkt 216 bis 217°C. – IR (KBr): $\tilde{\nu} = 3074 \text{ cm}^{-1}$, 3036, 3001, 2966, 1647, 1626, 1423, 1246, 1223, 976 – ¹H-NMR (CDCl₃, 300 MHz): $\delta = 4.23$ (s, 4H, CH₂Br), 7.39 – 7.46 (m, 10 H, aromat. H). – ¹³C-NMR (CDCl₃, 300 MHz): $\delta = 26.2$ (CH₂Br), 127.9, 128.5, 128.7, 129.8, 130.7, 158.9 (C-2, -6), 176.7 (C-4). – MS (70 eV): m/z (%) = 434 (45) [M⁺], 274 (100), 246 (22).

C₁₉H₁₄Br₂O₂ (434.13) Ber. C 52.57 H 3.25 Gef. C 52.51 H 3.35 Molmasse 434 (MS)

7,9,16,18-Tetraphenyl-2,11-dithia[3.3](2,6)pyranophan-8,17-dion (3): 4.34 g (10 mmol) 2, gelöst in Chloroform (Gesamtvolumen 150 ml) und 2.22 g (10 mmol) Natriumsulfid (Na₂S \cdot 7-9 H₂O, p.a.) in 90proz. Ethanol (Gesamtvolumen 150 ml) werden unter N₂ synchron aus zwei Feindosiertrichtern innerhalb von 5 h in 400 ml siedendes Ethanol getropft. Anschließend erhitzt man noch 3 d zum Rückfluß und destilliert das Lösemittel i. Vak. vollständig ab. Den entstehenden festen, dunkelgelben Rückstand rührt man kurz mit 100 ml Chloroform und filtriert von nicht löslichen Bestandteilen ab. Diese behandelt man in derselben Weise noch zweimal mit 50ml-Portionen. Die gesammelten Lösungen trocknet man mit wasserfreiem Magnesiumsulfat und engt sie i. Vak. bis auf ein kleines Volumen ein. Die so erhaltene konzentrierte Lösung trägt man auf eine Aluminiumoxid-Säule (40×3 cm) auf und eluiert erschöpfend mit einem Chloroform/Essigester-Gemisch [9:1 (v/v)]. Dic eluicrte Lösung wird i. Vak. bis zur Trockne eingeengt. Den Rückstand versetzt man bis zur vollständigen Lösung mit heißem Chloroform und anschließend unter Rühren tropfenweise mit etwa dem doppelten Volumen Aceton, wobei ein weißer Niederschlag ausfällt, der abgesaugt und über P2O5 i. Vak. getrocknet wird; 1.30 g (42%), Schmelzbereich 297–299 °C. – IR (KBr): $\tilde{v} = 3055 \text{ cm}^{-1}$, 2924, 2854, 1635, 1414, 1398, 976. – ¹H-NMR (CDCl₃, 300 MHz): δ = 3.69 (s, 8H, CH₂S), 7.24-7.43 (m, 20H, aromat. H). - ¹³C-NMR $(CDCl_3, 300 \text{ MHz}): \delta = 32.7 (CH_2S), 127.8, 128.4, 128.5, 130.3,$ 131.3, 160.5 (Pyran-C-2, -6), 176.5 (Pyran-C-4). - FD-MS: m/z(%) = 612 (100).

$\begin{array}{cccc} C_{38}H_{28}O_4S_2 \ (612.76) & \mbox{Ber. C } 74.48 \ H \ 4.61 & \mbox{Gef. C } 74.06 \ H \ 4.81 \\ & \mbox{Molmasse } 612 \ (MS) \end{array}$

7,9,16,18-Tetraphenyl-2,11-dithia[3.3](2,6)pyranophan-8,17dion-2,2,11,11-tetroxid (4): In eine etwa 100°C heiße, gerührte Lösung von 612 mg (1 mmol) 3 in 15-20 ml Eisessig tropft man innerhalb kurzer Zeit 2.7 ml 30proz. wäßrige H2O2-Lösung und erhitzt die sich bereits nach kurzer Zeit trübende Reaktionslösung 3 h zum Rückfluß. Nach 12stdg. Stehen saugt man den weißen, feinkristallinen Niederschlag ab, wäscht mehrfach mit Diethylether und trocknet im Ölpumpenvakuum bei 100 °C über festem Kaliumhydroxid. Die Verbindung enthält dann, wie IR- und NMR-Spektren sowie Elementaranalyse zeigen, noch 1 Äquivalent Essigsäure; 0.55 g (81%), Schmp. 320 - 321 °C. – IR (KBr): $\tilde{v} = 3071$ cm⁻¹ 3039, 2989, 2931, 1639, 1616, 1409, 1340, 1247, 1125, 973. - ¹H-NMR ([D₆]DMSO, 300 MHz): $\delta = 4.79$ (s, 8H, CH₂), 7.37-7.50 (m, 20H, aromat. H). $-{}^{13}$ C-NMR ([D₆]DMSO, 300 MHz): $\delta =$ 58.2 (CH₂), 128.3, 128.5, 130.2, 130.3, 130.4, 152.8 (Pyran-C-2, -6), 176.9 (Pyran-C-4). - FD-MS: m/z (%) = 676 (100).

$\begin{array}{c} C_{38}H_{28}O_8S_2\cdot CH_3CO_2H \ (676.77) \\ Gef. \ C \ 65.20 \ H \ 4.37 \ S \ 8.70 \\ Gef. \ C \ 65.27 \ H \ 4.46 \ S \ 8.98 \\ Molmasse \ 676 \ (MS) \end{array}$

16,18-Diphenyl-2,11-dithia[3]metacyclo[3](2,6)pyranophan-17on (7a), 16,18-Diphenyl-2,11-dithia[3]paracyclo[3](2,6)pyranophan-17-on (7b), 9-Methoxy-16,18-diphenyl-2,11-dithia[3]metacyclo[3](2,6)pyranophan-17-on (7c): 4.34 g (10 mmol) 2, gelöst in Chloroform (Gesamtvolumen 150 ml) und ein Gemisch aus 10 mmol der Dithiol-Komponenten 6a-c und 1.12 g (20 mmol) Kaliumhydroxid in Ethanol (Gesamtvolumen 150 ml) werden synchron während 5 h aus zwei unter N2-Druck stehenden Feindosiertrichtern in 400 ml siedendes, gerührtes Ethanol getropft. Danach erhitzt man noch 3 d zum Rückfluß und läßt abkühlen. Das Lösemittel wird vollständig i. Vak. abdestilliert, der verbleibende hellgelbe Feststoff unter leichtem Erwärmen (etwa 40°C) in 200 ml Chloroform gerührt. Die nicht gelösten Bestandteile filtriert man ab, rührt sie wie oben in 100 ml Chloroform, filtriert nochmals und trocknet die vereinigten Filtrate mit wasserfreiem Magnesiumsulfat. Nach Filtration destilliert man das Lösemittel i. Vak. bis auf ein geringes Volumen ab, trägt die konzentrierte Lösung auf eine Säule $(40 \times 4 \text{ cm})$ auf, die mit basischem Aluminiumoxid gefüllt ist, und eluiert erschöpfend mit Chloroform/Essigester [9:1 (v/v)] als Fließmittel. Nach Einengen des Eluats und Versetzen der noch heißen Lösung mit Aceton erhält man weiße, feinkristalline Feststoffe.

7a: 1.5 g (34%), Schmp. 276–278 °C. – IR (KBr): $\tilde{v} = 3053$ cm⁻¹, 3029, 1649, 1622, 1595, 1416, 1398, 1338, 1003. – ¹H-NMR (CDCl₃, 300 MHz): $\delta = 3.47$ (s, 4H, CH₂), 3.82 (s, 4H, CH₂), 7.07–7.41 (m, 13H, aromat. H), 8.21 (s, 1H, H_i). – ¹³C-NMR: $\delta = 31.4$ (CH₂), 38.0 (CH₂), 127.2, 127.9, 128.0, 128.2, 128.4, 130.2, 130.4, 131.8, 138.9, 160.8, (Pyran-C-2, -6), 176.1 (Pyran-C-4).

 $\begin{array}{c} C_{27}H_{22}O_2S_2 \ (442.60) & \mbox{Ber. C } 73.27 \ \mbox{H } 5.01 \ \ \mbox{Gef. C } 72.35 \ \mbox{H } 5.03 \\ \mbox{Ber. } 442.1061 \ \ \mbox{Gef. } 442.1086 \ \ \mbox{(MS)} \end{array}$

7b: 0.6 g (14%), Schmp. 260–263°C. – IR (KBr): $\tilde{v} = 3055$ cm⁻¹, 3030, 2914, 1641, 1622, 1610, 1412, 978. – ¹H-NMR (CDCl₃, 300 MHz): $\delta = 3.26$ (s, 4 H, CH₂), 3.75 (s, 4 H, CH₂), 7.15–7.40 (m, 14 H, aromat. H). – ¹³C-NMR (CDCl₃, 300 MHz): $\delta = 29.6$ (CH₂), 38.2 (CH₂), 127.7, 128.0, 128.2, 129.8, 130.3, 131.8, 138.2, 162.7 (Py-ran-C-2, -6), 176.6 (Pyran-C-4).

$\begin{array}{c} C_{27}H_{22}O_2S_2 \ (442.60) & \mbox{Ber. C } 73.27 \ \mbox{H } 5.01 \ \ \mbox{Gef. C } 72.18 \ \mbox{H } 5.12 \\ & \mbox{Ber. } 442.1061 \ \ \mbox{Gef. } 442.1055 \ \ \mbox{(MS)} \end{array}$

7c: 1.0 g (21%), Schmp. 267–270°C. – IR (KBr): $\tilde{v} = 3082$ cm⁻¹, 3018, 2924, 2816, 1633, 1624, 1612, 1408, 1400, 1003, 976. – ¹H-NMR (CDCl₃, 300 MHz): $\delta = 3.29$ (d, J = 14.8 Hz, 2H, CH₂), 3.64 (d, J = 13.3 Hz, 2H, CH₂), 3.73 (d, J = 14.9 Hz, 2H, CH₂), 3.85 (s, 3H, OCH₃), 4.20 (d, J = 13.3 Hz, 2H, CH₂), 7.10–7.39 (m, 13H, aromat. H). – ¹³C-NMR (CDCl₃, 300 MHz): $\delta = 31.0$ (CH₂), 33.2 (CH₂), 66.1 (OCH₃), 124.5, 126.7, 127.8, 128.2, 130.3, 131.3, 132.0, 132.2, 157.4, 162.0 (Pyran-C-2, -6), 176.6 (Pyran-C-4). C₂₈H₂₄O₃S₂ (472.62) Ber. C 71.16 H 5.12 Gef. C 70.16 H 5.48

Ber. 472.1167 Gef. 472.1132 (MS)

16,18-Diphenyl-2,11-dithia[3]metacyclo[3](2,6)pyranophan-17on-2,2,11,11-tetroxid (8a), 16,18-Diphenyl-2,11-dithia[3]paracyclo-[3](2,6)pyranophan-17-on-2,2,11,11-tetroxid (8b), 9-Methoxy-16,18-diphenyl-2,11-dithia[3]metacyclo[3](2,6)pyranophan-17-on-2,2,11,11-tetroxid (8c): In eine etwa 100 °C heiße, gerührte Lösung von 1 mmol 7a - c in 10.0 - 20.0 ml absoluten Eisessigs tropft man innerhalb kurzer Zeit 1.35 ml (dreifacher Überschuß) 30proz. wäßrige H₂O₂-Lösung und erhitzt anschließend noch 3 h zum Rückfluß. Nach Abkühlen saugt man den weißen, feinkristallinen Niederschlag des Bis(sulfons) ab, wäscht mehrfach mit Diethylether und trocknet im Ölpumpenvakuum bei 100 °C über festem Kaliumhydroxid.

8a: 0.42 g (83%), Schmp. 352°C. – IR (KBr): $\tilde{\nu} = 3051 \text{ cm}^{-1}$, 2985, 2924, 1655, 1637, 1402, 1252, 1117. – ¹H-NMR ([D₆]DMSO, 300 MHz): $\delta = 4.34$ (s, 4H, CH₂), 4.90 (s, 4H, CH₂), 7.25 – 7.28 (m, 4H, Ph), 7.44 – 7.51 (m, 6H, aromat. H), 7.57 (br. s, 3H, aromat. H), 7.97 (s, 1H, H_i). – ¹³C-NMR ([D₆]DMSO, 300 MHz): $\delta = 56.4$ (CH₂), 61.8 (CH₂), 128.1, 128.3, 129.0, 129.6, 130.1, 130.5, 130.9,

131.8, 132.1, 153.2 (Pyran-C-2, -6), 175.5 (Pyran-C-4). – FD-MS: m/z (%) = 506 (100).

$\begin{array}{c} C_{27}H_{22}O_6S_2 \ (506.60) & \mbox{Ber. C } 64.01 \ H \ 4.38 & \mbox{Gef. C } 63.37 \ H \ 4.15 \\ & \mbox{Molmasse } 506 \ (MS) \end{array}$

8b: 0.41 g (81%), Schmp. 349-350 °C (Zers.). – IR (KBr): $\hat{v} = 3064 \text{ cm}^{-1}$, 3005, 2951, 1641, 1630, 1404, 1325, 1313, 1255, 1120. – ¹H-NMR ([D₆]DMSO, 300 MHz): $\delta = 4.19$ (s, 4H, CH₂), 4.75 (s, 4H, CH₂), 7.16–7.19 (m, 4H, aromat. H), 7.35–7.44 (m, 6H, aromat. H), 7.67 (s, 4H, aromat. H). – ¹³C-NMR ([D₆]DMSO, 300 MHz): $\delta = 55.5$ (CH₂), 61.8 (CH₂), 128.1, 128.2, 129.5, 130.0, 131.1, 131.2, 131.8, 154.0 (Pyran-C-2, -6), 175.4 (Pyran-C-4). – FD-MS: m/z (%) = 506 (100).

C₂₇H₂₂O₆S₂ (506.60) Ber. C 64.01 H 4.38 Gef. C 63.93 H 4.35 Molmasse 506 (MS)

8c: 0.43 g (80%), Schmp. > 350 °C. – IR (KBr): $\tilde{v} = 3062 \text{ cm}^{-1}$, 2993, 2948, 1645, 1630, 1406, 1325, 1317, 1248, 1115. – ¹H-NMR ([D₆]DMSO, 300 MHz): $\delta = 3.70$ (s, 3H, OCH₃), 4.00 (d, J = 15.4 Hz, 2H, CH₂), 4.47 (d, J = 14.0 Hz, 2H, CH₂), 4.73 (d, J = 15.4 Hz, 2H, CH₂), 5.06 (d, J = 14.2 Hz, 2H, CH₂), 7.13 – 7.16 (m, 4H, Ph), 7.21 (t, J = 7.6 Hz, 1H, an Phenylen-C-5), 7.33 – 7.35 (m, 6H, aromat. H), 7.43 (d, J = 7.7 Hz, 2H, an Phenylen-C-4, -6). – ¹³C-NMR ([D]TFA, 300 MHz): $\delta = 59.1$, 62.1, 126.6, 127.0, 127.8, 129.3, 130.3, 132.4, 135.2, 156.7, 158.2, 181.2 (Pyran-C-4). – FD-MS: m/z (%) = 536 (100).

C₂₈H₂₄O₇S₂ (536.62) Ber. C 62.67 H 4.51 Gef. C 62.69 H 4.56 Molmasse 536 (MS)

6,8,14,16-Tetraphenyl[2.2](2,6)pyranophan-7,15-dion (5), 14,16-Diphenyl[2]metacyclo[2](2,6)pyranophan-15-on (9), 14,16-Diphenyl[2]paracyclo[2](2,6)pyranophan-15-on (10), 8-Methoxy-14,16diphenyl[2]metacyclo[2](2,6)pyranophan-15-on (11): Unter Berücksichtigung der Beobachtung, daß die Bis(sulfone) 4, 8a, 8b und 8c z. T. schon 10-20 K über ihren Schmelzpunkten deutliche Zersetzungserscheinungen zeigen, wurden beim Bau der Pyrolyseapparatur²⁰⁾ zwei wichtige Konstruktionsdetails realisiert: Erstens ist die Apparatur mit zwei voneinander getrennt regelbaren Heizzonen versehen²¹⁾, zweitens werden die tatsächlichen Temperaturen "vor Ort" innerhalb der Heizzonen mit empfindlichen Thermoelementen gemessen, so daß bei Verwendung einer empfindlichen Regelung²²⁾ exakte Temperatureinstellungen innerhalb geringer Schwankungen (\pm 3 K) möglich sind.

Ein mit Bis(sulfon) (200 mg) gefülltes Platin-Schiffchen wird mit einem speziellen Löffel²⁰⁾ von der Seite des Kühlfingers her in das Pyrolyserohr eingeführt und mit einem im Löffelgriff befindlichen Stempel aus seiner Führung in das Quarzrohr geschoben. Es befindet sich nun, wie auch die Spitze des kürzeren Thermoelements, genau in der Mitte der Verdampfungszone. Nun wird die Auffangkammer O-Ring-abgedichtet angesetzt, der abgeplattete Kühlfinger positioniert und mittels Quetschverschraubung abgedichtet sowie der Druckmeßkopf mit Pirani- und Penning-Meßröhre angeschlossen. Nach Hochvakuum-Anschluß und Inbetriebnahme der Kühlung von Kühlfinger und Edelstahlmantel wird die Apparatur auf etwa 5 · 10⁻⁴ Torr evakuiert und anschließend die Pyrolysezone auf die gewünschte Pyrolysetemperatur eingestellt. Nach Wiedererreichung des kurzzeitig verschlechterten Vakuums heizt man die Verdampfungszone relativ langsam bis zum Schmelzpunkt des Eduktes auf, anschließend nur sehr langsam höher bis zu einer Temperatur, bei der das Vakuum deutlich schlechter wird (ca. $5 \cdot 10^{-2}$ Torr) aber relativ konstant bleibt. Nach etwa 10 min erhöht man die Temperatur der Verdampfungszone zur Sicherheit nochmals langsam um etwa 40 K. Nach Abkühlen und Belüften der Apparatur wird

	5 · Aceton	8a · Aceton	9
	Kristalldaten		
Formel	$C_{41}H_{34}O_{5}$	$C_{30}H_{28}O_7S_2$	C ₂₇ H ₂₂ O ₂
Kristallformat [mm]	$0.5 \times 0.3 \times 0.1$	$0.3 \times 0.2 \times 0.2$	$0.35 \times 0.30 \times 0.12$
Absorption $\mu \left[cm^{-t} \right]$	5.8	21.9	5.9
		nicht korrigiert	
Raumgruppe	$P\overline{1}, Z = 1$	Pnma, $Z = 4$	$P2_{1}/c, Z = 4$
Gitterkonstanten a [pm]	650.0(3)	922.2(2)	1074.0(3)
b [pm]	1057.9(2)	1634.6(3)	1748.4(2)
c [pm]	1182.6(5)	1751.5(2)	1089.2(3)
α [^ˆ]	81.98(2)		
βǰĪ	81.42(2)		94.39(2)
γ Γ°1	81.22(2)		() ()
Temperatur [K]	293	228	293
Dichte $d_{\text{ber.}} [\text{gcm}^{-3}]$	1.277	1.420	1.233
	Datensammlung		
Gerät	4-Kreisdiffraktometer	CAD4 (Enraf-Nonius)	
Strahlung	Cu-K _m Graphit-Mono	chromator	
Scan-Breite (ω-Modus) [°]	0.8	0.9	0.8
· / 	+ $(0.14tg\theta)$ und 25%	vor und nach jedem Reflex zur	Untergrundmessung
Messbereich θ [°]	2-55	2-55	2-65
Reflexzahl, gesamt	2493	1992	5968
davon unabhängige	1442	1411	2810
$[F_{o} > 3\sigma(F_{o})]$			
Parameteranzahl	246	194	351
Extinktionskoeff. ε	$2.9 \cdot 10^{-6}$	$4.7 \cdot 10^{-7}$	$5.9 \cdot 10^{-7}$
Zuverlässigkeitsfaktoren R	0.0450	0.0497	0.0591
	0.0299	0.0421	0.0465

Tab. 4. Kristalldaten und Meßparameter zu den Strukturbestimmungen

Tab. 5. Atomparameter und äquivalente isotrope Temperaturfaktoren $[A^2]$ in 5 · Aceton (ohne H-Atome)

Atom	x	У	z	Uäq
C1	-0.1421(5)	0.2182(3)	-0.0617(3)	0.043(1)
C2	-0.0116(4)	0.1752(3)	0.0357(3)	0.040(1)
C3	-0.0327(4)	0.2228(3)	0.1352(3)	0.038(1)
C4	0.1032(5)	0.1626(3)	0.2245(3)	0.043(1)
04	0.1025(3)	0.2101(2)	0.3125(2)	0.058(1)
C5	0.2269(4)	0.0395(3)	0.1993(3)	0.037(1)
C6	0.2313(4)	-0.0032(3)	0.0975(3)	0.040(1)
06	0.1343(3)	0.0715(2)	0.0094(2)	0.0415(8)
C7	-0.3151(5)	0.1324(3)	-0.0605(3)	0.043(1)
C8	-0.1920(5)	0.3347(3)	0.1626(3)	0.040(1)
Ç9	-0.3952(5)	0.3158(3)	0.2080(3)	0.054(1)
C10	-0.5433(5)	0.4196(3)	0.2359(3)	0.062(2)
C11	-0.4876(6)	0.5414(3)	0.2197(3)	0.064(2)
C12	-0.2870(5)	0.5603(3)	0.1752(3)	0.075(2)
C13	-0.1401(5)	0.4567 (3)	0.1473(3)	0.059(2)
C14	0.3440(5)	-0.0371(3)	0.2916(3)	0.038(1)
C15	0.2401(5)	-0.0746(3)	0.3978(3)	0.052(1)
C16	0.3490(6)	-0.1435(3)	0.4847(3)	0.065(2)
C17	0.5626(6)	-0.1733(3)	0.4649(3)	0.067(2)
C18	0.6688(5)	-0.1374(3)	0.3603(3)	0.060(2)
C19	0.5612(5)	-0.0684(3)	0.2723 (3)	0.049(1)
032*)	0.0465(9)	0,6253(5)	0.3494(5)	0.093(3)
C33	0.160(1)	0.5355(6)	0.5278(6)	0.127(3)
C34*)	0.033(1)	0.5561(8)	0.4371(9)	0.069(4)

*) Halbbesetzt durch Lagefehlordnung des Acetons.

das Rohprodukt mit Chloroform vom Kühlfinger (und ggf. aus der Auffangkammer) gespült, die Lösung i. Vak. bis auf ein Minimum eingeengt und mit Chloroform als Fließmittel an Kieselgel (Säule 3×30 cm) chromatographiert. Man fängt 60 Fraktionen zu je 15-20 ml auf, kontrolliert mittels Mikro-DC (Aceton) und vereinigt alle Lösungen, die ausschließlich Produkt enthalten. Nach Abdestillieren des Lösemittels kristallisiert man noch um. Um Kristalle für Röntgenstrukturanalysen zu erhalten, erwies es sich als günstig, trotz Verlusten die Pyranophanone sehr langsam aus größeren

Tab. 6. Atomparameter und äquivalente isotrope Temperaturfaktoren $[A^2]$ in 9 (ohne H-Atome)

Atom	x	У	z	Uäq
01	0.3974(1)	0.1429(1)	0.4404(2)	0.0669(6)
02	0.4933(2)	-0.0392(1)	0.2475(2)	0.0930(8)
C1	0.2103(3)	0.0936(2)	0.5105(3)	0.074(1)
C2	0.1042(3)	0.1420(2)	0.4447(3)	0.083(1)
C3	0.1484(2)	0.2213(2)	0.4159(3)	0.076(1)
C4	0.1304(3)	0.2855(2)	0.4878(3)	0.086(1)
C5	0.1949(3)	0.3520(2)	0.4718(3)	0.089(1)
C6	0.2876(3)	0.3541(2)	0.3886(3)	0.081(1)
C7	0.3088(2)	0.2914(2)	0.3179(2)	0.072(1)
C8	0.2300(2)	0.2287(2)	0.3217(3)	0.075(1)
C9	0.4301(3)	0.2804(2)	0.2564(3)	0.080(1)
C10	0.5232(3)	0.2340(2)	0.3437(3)	0.076(1)
C11	0.4856(2)	0.1519(2)	0.3547(2)	0.064(1)
C12	0.5219(2)	0.0918(1)	0.2910(2)	0.061(1)
C13	0.4586(2)	0.0184(2)	0.2986(2)	0.066(1)
C14	0.3442(2)	0.0190(1)	0.3662(2)	0.060(1)
C15	0.3205(2)	0.0802(2)	0.4342(2)	0.063(1)
C16	0.2595(2)	-0.0476(2)	0.3497(2)	0.064(1)
C17	0.1423(3)	-0.0410(2)	0.2882(3)	0.081(1)
C18	0.0671(3)	-0.1045(3)	0.2654(3)	0.099(2)
C19	0.1088(4)	-0.1752(3)	0.3011(4)	0.103(2)
C20	0.2227(4)	-0.1825(2)	0.3614(3)	0.096(2)
C21	0.2984(3)	-0.1202(2)	0.3854(3)	0.077(1)
C22	0.6253(2)	0.0968(1)	0.2049(3)	0.062(1)
C23	0.7477(2)	0.1045(2)	0.2528(3)	0.082(1)
C24	0.8432(3)	0.1060(2)	0.1723(4)	0.096(2)
C25	0.8178(3)	0.0997(2)	0.0501(4)	0.090(1)
C26	0.6975(3)	0.0922(2)	0.0017(3)	0.090(1)
C27	0.6008(3)	0.0906(2)	0.0812(3)	0.076(1)

Mengen eines Lösemittels auskristallisieren zu lassen, in dem auch noch in der Kälte eine gewisse Löslichkeit vorhanden ist (Aceton). Die Angabe der Ausbeuten im folgenden bezieht sich auf die von Kühlfinger und Metallgehäuse entfernten Rohprodukte, die aber, nach Mikro-DC, NMR-Spektren und Elementaranalysen, beinahe ausschließlich die gewünschten Pyranophanone enthalten.

5: 41 mg (25%), Schmp. > 350 °C. – 1R (KBr): $\tilde{v} = 3054$ cm⁻¹, 3028, 2923, 1650, 1636, 1598, 1435, 1395, 1300, 1201, 980. – ¹H-

NMR (CDCl₁, 300 MHz): $\delta = 2.77$ (s, 8H, CH₂), 7.21-7.40 (m, 20 H, aromat. H). $-{}^{13}$ C-NMR (CDCl₃, 300 MHz): $\delta = 31.7$ (CH₂), 127.4, 128.1, 128.4, 130.1, 132.2, 164.7, (Pyran-C-2, -6), 177.7 (Pyran-C-4).

 $C_{38}H_{28}O_4 \ (548.64) \quad \text{Ber. C } 83.19 \ \text{H} \ 5.14 \quad \text{Gef. C } 83.35 \ \text{H} \ 5.31$ Molmasse 548 (MS)

9: 67 mg (45%), Schmp. 243 - 245 °C (Aceton). – IR (KBr): $\tilde{v} =$ 3054 cm⁻¹, 3024, 2996, 2930, 1645, 1627, 1598, 1431, 1393, 1306, 1192, 958. - ¹H-NMR (CDCl₃, 300 MHz): $\delta = 1.83 - 1.95$ (m, 2H, CH₂), 2.78-2.87 (m, 4H, CH₂), 2.90-2.97 (m, 2H, CH₂), 6.62 (s,

Tab. 7. Atomparameter und äquivalente isotrope Temperaturfaktoren $[A^2]$ in **8a** · Aceton (ohne H-Atome)

Atom	x	У	Z	^U äg
C1	0.0861(2)	0.1166(2)	1.0007(4)	0.023(1)
S2	0.02551(6)	0.08710(6)	0.8465(1)	0.0275(3)
021	0.0335(2)	0.0052(1)	0.8325(3)	0.035(1)
022	0.0498(2)	0.1335(2)	0.7251(3)	0.033(1)
C3	-0.0785(2)	0.1067(2)	0.8903(5)	0.032(2)
C4	-0.0922(2)	0.1817(2)	0.9660(4)	0.025(1)
C5	-0.1178(2)	0.1823(2)	1.1084(4)	0.029(2)
C6	-0.1309(3)	0.25	1.1782(7)	0.035(2)
C7	-0.0800(3)	0.25	0.8933(6)	0.025(2)
08	0.1006(2)	0.25	0.9860(4)	0.020(1)
C9	0.1417(2)	0.1828(2)	0.9709(4)	0.022(1)
C10	0.2215(2)	0.1786(2)	0.9388(4)	0.019(1)
C11	0.2684(3)	0.25	0.9255(6)	0.024(2)
011	0.3430(2)	0.25	0.9049(5)	0.034(2)
C12	0.2664 (2)	0.1047(2)	0.9231(4)	0.023(1)
C13	0.2412(2)	0.0492(2)	0.8268(4)	0.030(2)
C14	0.2834(3)	-0.0190(2)	0.8156(5)	0.040(2)
C15	0.3515(3)	-0.0318(3)	0.8998(5)	0.042(2)
C16	0.3785(3)	0.0232(2)	0.9943(5)	0.037(2)
C17	0.3365(2)	0.0913(2)	1.0051(4)	0.031(2)
019*)	0.3401(4)	0.75	0.7969(6)	0.128(4)
C18*)	0.3203(4)	0.75	1.0460(7)	0.047(3)
c19*j	0.3710(5)	0.75	0.9136(8)	0.045(3)
c20*)	0.4601(4)	0.75	0.9296(8)	0.062(3)

*) Aceton.

1 H, H_i), 7.07 (dd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.5$ Hz, 2 H, an Phenylen-C-4, -6), 7.30 (t, J = 7.5 Hz, 1H, an Phenylen-C-5), 7.32 - 7.43 (m, 10 H, aromat. H). $-{}^{13}$ C-NMR (CDCl₃, 300 MHz): $\delta = 35.0$ (CH₂), 37.4 (CH₂), 125.1, 127.8, 128.4, 128.5, 129.3, 130.2, 132.7, 134.6, 139.8, 166.5 (Pyran-C-2, -6), 177.9 (Pyran-C-4).

Ber. C 85.69 H 5.86 Gef. C 85.70 H 6.33 $C_{27}H_{22}O_2$ (378.47) Molmasse 378 (MS)

10: 37 mg (25%), Schmp. $258 - 260 \degree C. - IR$ (KBr): $\tilde{v} = 3060$ cm⁻¹, 3020, 2955, 2938, 1639, 1623, 1612, 1596, 1490, 1427, 1396, 1303, 1183, 950. – ¹H-NMR (CDCl₃, 400 MHz, 218 K): δ = 1.90-1.93 (m, 2H, CH₂), 2.53-2.59 (m, 4H, CH₂), 3.02-3.06 (m, 2H, CH₂), 6.94 (s, 2H, H_i), 7.38 (s, 2H, H_a); (298 K): $\delta = ca. 1.8 - 3.1$ (br., 8H, CH₂), ca. 7.0-7.2 (br., 4H, an Phenylen-C-2, -3, -5, -6), 7.25 - 7.51 (m, 10 H, aromat. H); (333 K): $\delta = 2.26$ (br. s, 4 H, CH₂), 2.80 (br. s, 4H, CH₂), 7.17 (br. s, 4H, an Phenylen-C-2, -3, -5, -6), 7.24 - 7.41 (m, 10H, aromat. H). - ¹³C-NMR (CDCl₃, 300 MHz, 298 K): $\delta = 35.4$ (CH₂), 36.2 (CH₂), 127.8, 128.1, 128.2, 128.3, 129.0, 130.0, 130.4, 132.7, 139.8, 164.8 (Pyran-C-2, -6), 177.5 (Pyran-C-4). C27H22O2 (378.47) Ber. C 85.69 H 5.86 Gef. C 84.92 H 5.77 Molmasse 378 (MS)

11: 53 mg (35%), Schmp. 234-236°C (Methanol). - IR (KBr): $\tilde{v} = 3055 \text{ cm}^{-1}$, 3026, 2996, 2929, 2856, 1645, 1628, 1598, 1492, 1443, 1431, 1393, 1308, 1192, 959. - ¹H-NMR (CDCl₃, 300 MHz): $\delta = 1.86$ (dt, ${}^{3}J = 3.7$ Hz, ${}^{2}J = -12.5$ Hz, 2H, CH₂), 2.60 (td, ${}^{3}J = 3.9 \text{ Hz}, {}^{2}J = -12.7 \text{ Hz}, 2\text{H}, C\text{H}_{2}, 2.86 \text{ (td, }{}^{3}J = 3.5 \text{ Hz}, {}^{2}J =$ -13.5 Hz, 2H, CH₂), 3.26 (dt, ${}^{3}J = 2.9$ Hz, ${}^{2}J = -12.5$ Hz, 2H, CH₂), 3.66 (s, 3H, OCH₃), 7.06 (s, 3H, an Phenylen-C-4, -5, -6), 7.31 - 7.44 (m, 10H, aromat. H). $- {}^{13}$ C-NMR (CDCl₃, 300 MHz): $\delta = 31.4$ (CH₂), 34.4 (CH₂), 61.0 (OCH₃), 125.4, 126.5, 127.3, 127.5, 128.1, 130.3, 133.5, 133.9, 162.2, 165.6, 177.9 (Pyran-C-4).

C₂₈H₂₄O₃ Ber. 408.1725 Gef. 408.1697 (MS)

Röntgenstrukturanalysen²³): Die Kristallstrukturen von 5, 9 und 8a wurden mit Hilfe eines Vierkreis-Diffraktometers ermittelt. Die Meßbedingungen und Kristalldaten sind in Tab. 4 zusammengestellt. Die Strukturen wurden mit Direkten Methoden (SHELXS-86²⁴) gelöst und unter Verwendung anisotroper Temperaturfaktoren für alle schweren Atome mit voller Matrix verfeinert (SHELX-76²⁵). Bei 5 wurden die H-Atome der Brücken frei mit isotropen Temperaturfaktoren verfeinert, die der Phenyl-Substituenten auf berechneten Lagen [d(C-H) = 96 pm], reitend" mit gemeinsamem Temperaturfaktor miteinbezogen. Die H-Atome des fehlgeordneten Acetons wurden nicht lokalisiert. Bei 9 konnten alle H-Atome gefunden und frei mit isotropen Temperaturfaktoren verfeinert werden, bei 8a wurden sie alle auf den C-Atomen "reitend" mit gruppenweise gemeinsamem Temperaturfaktor einberechnet. In allen Fällen wurde die Sekundärextinktion durch Verfeinerung eines empirischen Faktors ε in $F_{c}(\text{korr.}) = F_{c}(1 - \varepsilon \cdot F_{c}^{2}/\sin \Theta)$ korrigiert, sowie eine Gewichtung der F_{α} -Werte nach $w = 1/\sigma^2(F_{\alpha})$ vorgenommen. Die resultierenden Atomparameter sind in Tab. 5-7 zusammengestellt.

CAS-Registry-Nummern

1: 33731-54-3 / 2: 124945-37-5 / 3: 124945-38-6 / 4: 124945-39-7 / 5: 124945-40-0 / 5 · Aceton: 125073-34-9 / 6a: 41563-69-3 / 6b: 105-09-9 / 6c: 78007-12-2 / 7a: 124945-41-1 / 7b: 124945-42-2 / 7c: 124945-43-3 / 8a: 124945-44-4 / 8a · Aceton: 125073-33-8 / 8b: 124945-45-5 / 8c: 124991-99-7 / 9: 124945-48-8 / 10: 124945-46-6 / 11: 124945-47-7

- ²⁾ Zur Reaktivität von 4-Pyranon vgl.: G. P. Ellis, "Pyrans and Fused Pyrans: (ii) Reactivity", in Comprehensive Heterocyclic Chemistry, Bd. 3, Teil 2B (A. R. Katritzky, Hrsg.), S. 692ff., Pergamon Press, Oxford-New York 1984, und dort zitierte Stellen.
- T. L. Emmick, R. L. Letsinger, Org. Synth. 47 (1967) 54. ^{3b)} R. L. Letsinger, J. D. Jamison, J. Am. Chem. Soc. 83 (1961) 193.
- 4) Vgl.: L. Rossa, F. Vögtle, "Synthesis of Medio- and Macrocyclic Compounds by High Dilution Principle Techniques" in Topics in Current Chemistry, Bd. 113, (F. Vögtle, Hrsg.) S. 1 ff., Springer, Berlin 1983, und dort zitierte Stellen.
- ⁵⁾ Vgl.: ^{5a)} F. Vögtle, Chem. Ber. 102 (1969) 3077. ^{5b)} Übersicht über Sulfon-Pyrolysen: F. Vögtle, L. Rossa, Angew. Chem. 91 (1979) 534; Angew. Chem. Int. Ed. Engl. 18 (1979) 514.
- ⁶⁾ Vgl. z. B.: A. J. Speziale, Org. Synth. 30 (1950) 35.
- ⁷⁾ I. Gault, B. J. Price, I. O. Sutherland, J. Chem. Soc., Chem. Commun. 1967, 540.
- ⁸⁾ Vgl. hierzu: ^{8a)} Das analoge [2]Metacyclo [2](2,6)pyridinophan: J. R. Fletcher, I. O. Sutherland, J. Chem. Soc., Chem. Commun. 1969, 1504. – ^{8b)} Das analoge [2.2]Metacyclophan: F. Vögtle, P. Neumann Angew. Chem. 84 (1972) 75; Angew. Chem. Int. Ed. Engl. 11 (1972) 73, und dort zitierte Stellen zu ¹H-NMR-Unter-
- ^{9) 9a)} D. J. Cram, R. C. Helgeson, D. Lock, L. A. Singer, J. Am. Chem. Soc. 88 (1966) 1324. ^{9b)} D. T. Hefelfinger, D. J. Cram, J. Am. Chem. Soc. 92 (1970) 1073.
- ¹⁰⁾ Vgl.: F. Vögtle, P. Neumann, *Chimia* **26** (1972) 64. ¹¹⁾ ^{11a)} M. Karplus, *J. Chem. Phys.* **30** (1959) 11. ^{11b)} M. Karplus, J. Am. Chem. Soc. 85 (1963) 2870.

¹⁾ Umfassender Überblick zur Stereochemie und zur konformativen Beweglichkeit von Cyclophanen: R. H. Mitchell, "Nuclear Magnetic Resonance Properties and Conformational Behavior of Cyclophanes", in Cyclophanes (Organic Chemistry, Bd. 45, P. M. Keehn, S. M. Rosenfeld, Hrsg.), S. 240ff., Academic Press, New York 1983.

- ¹²⁾ Vgl.: H. Friebolin, Ein- und zweidimensionale NMR-Spektroskopie, S. 75, VCH Verlagsgesellschaft, Weinheim-Basel-Cambridge – New York 1988. ¹³⁾ ^{13a)} C. J. Brown, J. Chem. Soc. **1953**, 3278. – ^{13b)} Y. Kai, N. Ya-
- suoka, N. Kasai, Acta Crystallogr., Sect. B, 33 (1971) 754.
 ¹⁴ N. L. Allinger, B. J. Gordon, S. E. Hu, R. A. Ford, J. Org. Chem.
- **32** (1967) 2272.
- ¹⁵⁾ Erwartungsbereich: -11 bis -14 Hz, vgl. Lit.¹¹⁾, S. 71.
- ¹⁶⁾ Wir danken Herrn Dr. Bast herzlich für seine Computer-Simulationen.
- ¹⁷⁾ E. Keller, SCHAKAL-86B, A FORTRAN Program for the Graphic Representation of Molecular and Crystallographic Models, Freiburg 1986.
- ¹⁸⁾ N. B. Pahor, M. Calligaris, L. Randaccio, J. Chem. Soc., Perkin
- ¹⁰ N. B. Panor, M. Camgaris, L. Kandaccio, J. Chem. Soc., Person Trans. 2, 1978, 38, Zitat nach Lit.¹⁾.
 ^{19) 19a)} W. Anker, G. W. Bushnell, R. H. Mitchell, Can. J. Chem. 57 (1979) 3080. ^{19b)} T.-L. Chan, C.-K. Chan, K.-W. Ho, J. S. Tse, T. C. W. Mak, J. Cryst. Mol. Struct. 7 (1977) 199. ^{19c)} B. R. Davis, I. Bernal, J. Chem. Soc. B, 1971, 2307; Zitate nach Lit.¹⁾.

- ²⁰⁾ Wir danken Herrn L. Köhler und Herrn E. Merkel, Feinmechanische Werkstatt des Fachbereichs Chemie der Universität Marburg, für den Bau der sehr aufwendigen Apparatur.
- ²¹⁾ Die empfindliche Regelung wurde von Herrn *W. Sauer* und Herrn *W. Kröschel*, Elektronik-Werkstatt des Fachbereichs Chemie der Universität Marburg realisiert. Dafür danken wir
- ²²⁾ Vgl. hierzlich,
 ²²⁾ Vgl. hierzlic^{22a} H. A. Staab, M. Haenel, *Chem. Ber.* **106** (1973) 2190. ^{22b} M. Haenel, H. A. Staab, *Chem. Ber.* **106** (1973) 2203.
- Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54219, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ²⁴⁾ G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, Göttingen 1986.
- ²⁵⁾ G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge 1976.

[361/89]